IoT-Based Wearable Sensors and Bidirectional LSTM Network for Action Recognition of Aerobics Athletes

Author:

Ye Jing1,Wang Hui23ORCID,Li MeiJie4,Wang Ning3

Affiliation:

1. School of Sports Science, Tianjin Normal University, Tianjin 300387, China

2. Sports Institute, Henan Agricultural University, Zhengzhou 450002, China

3. Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk 80-336, Poland

4. Sports Institute, Korea Gangneung-Wonju National University, Gangneung 25457, Republic of Korea

Abstract

Aerobics is the fusion of gymnastics, dance, and music; it is a body of a sports project, along with the development of the society. The growing demand for aerobics inevitably increases the demand for aerobics coach and teacher and has opened elective aerobics class which is an effective way of cultivating professional talents relevant to aerobics. Aerobics has extended fixed teaching mode and cannot conform to the development of the times. The motion prediction of aerobics athletes is a new set of teaching aid. In this paper, a motion prediction model of aerobics athletes is built based on the wearable inertial sensor of the Internet of Things and the bidirectional long short term memory (BiLSTM) network. Firstly, a wireless sensor network based on ZigBee was designed and implemented to collect the posture data of aerobics athletes. The inertial sensors were used for data collection and transmission of the data to the cloud platform through Ethernet. Then, the movement of aerobics athletes is recognized and predicted by the BiLSTM network. Based on the BiLSTM network and the attention mechanism, this paper proposes to solve the problem of low classification accuracy caused by the traditional method of directly summing and averaging the updated output vectors corresponding to each moment of the BiLSTM layer. The simulation experiment is also carried out in this paper. The experimental results show that the proposed model can recognize aerobics effectively.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3