Development of an MS Workflow Based on Combining Database Search Engines for Accurate Protein Identification and Its Validation to Identify the Serum Proteomic Profile in Female Stress Urinary Incontinence

Author:

El Jadid Sara12ORCID,Bensellak Taoufik2ORCID,Touahni Raja1ORCID,Moussa Ahmed2ORCID

Affiliation:

1. Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco

2. National School of Applied Sciences, Abdelmalek Essaadi University, Tangier, Morocco

Abstract

A critical stage of shotgun proteomics is database search, a process which attempts to match the experimental spectra to the theoretical one. Given the considerable time and effort spent in analysis, it is self-evident for a researcher to aspire for rigorous computational analysis and a more confident and accurate peptide/protein identification. Mass spectrometry (MS) has been applied across several clinical disciplines. The pathophysiology of Stress Urinary Incontinence (SUI), caused by a damaged pelvic floor, has become a boundless disease altering the quality of life worldwide. Although some studies pointed markers that can be bioindicators for SUI, these findings raise the issue of sensitivity and specificity. Therefore, it is critical to have a sensitive and specific analytical approach to identify markers that have been associated with protective and deleterious associations in disease. Here, we describe our designed and developed workflow for protein identification from tandem mass spectrometry that uses multiple search engines. We apply our workflow to an existing study addressing the pathophysiology of SUI. We demonstrate how using the combined approach together with high-performance computing techniques can surmount the challenges of complex analyses and extended computing time. We also compare the relative performance of each combination. Our results suggest that a combination of MS-GF+ and COMET represents the best sensitivity-specificity trade-off, outperforming all other tested combinations. The approach was also sensitive and accurately identified a set of protein that was shown to be markers for categories of diseases associated with the pathophysiology of SUI. This workflow was developed to encourage proteomic researchers to adopt MS-based techniques for accurate analysis and to promote MS as a routine tool to the clinical cohorts.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3