Enhanced Anomaly-Based Fault Detection System in Electrical Power Grids

Author:

Elmasry Wisam1ORCID,Wadi Mohammed1ORCID

Affiliation:

1. Electrical & Electronics Engineering Department, Istanbul Sabahattain Zaim University, Istanbul, Turkey

Abstract

Early and accurate fault detection in electrical power grids is a very essential research area because of its positive influence on network stability and customer satisfaction. Although many electrical fault detection techniques have been introduced during the past decade, the existence of an effective and robust fault detection system is still rare in real-world applications. Moreover, one of the main challenges that delays the progress in this direction is the severe lack of reliable data for system validation. Therefore, this paper proposes a novel anomaly-based electrical fault detection system which is consistent with the concept of faults in the electrical power grids. It benefits from two phases prior to training phase, namely, data preprocessing and pretraining. While the data preprocessing phase executes all elementary operations on the raw data, the pretraining phase selects the optimal hyperparameters of the model using a particle swarm optimization (PSO)-based algorithm. Furthermore, the one-class support vector machines (OC-SVMs) and the principal component analysis (PCA) anomaly-based detection models are exploited to validate the proposed system on the VSB dataset which is a modern and realistic electrical fault detection dataset. Finally, the results are thoroughly discussed using several quantitative and statistical analyses. The experimental results confirm the effectiveness of the proposed system in improving the detection of electrical faults.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilizing Metaheuristics to Estimate Wind Energy Integration in Smart Grids With A Comparative Analysis of Ten Distributions;Electric Power Components and Systems;2024-05-03

2. An Improved Method for Fault Detection Electric Power System Protection using SVMCNN Model;2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC);2024-05-02

3. Load frequency control in smart grids: A review of recent developments;Renewable and Sustainable Energy Reviews;2024-01

4. NiaNetAD: Autoencoder architecture search for tabular anomaly detection powered by HPC;2023 IEEE 23rd International Symposium on Computational Intelligence and Informatics (CINTI);2023-11-20

5. Overview of Electric Vehicles Charging Stations in Smart Grids;2023 13th International Conference on Computer and Knowledge Engineering (ICCKE);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3