New Bounds for Ternary Covering Arrays Using a Parallel Simulated Annealing

Author:

Avila-George Himer1,Torres-Jimenez Jose2,Hernández Vicente3

Affiliation:

1. Instituto Tecnológico Superior de Salvatierra, Madero 303, 38900 Salvatierra, Guanajuato, Mexico

2. Information Technology Laboratory, Cinvestav Tamaulipas, Km. 5.5 Carretera Victoria-Soto La Marina, 87130 Victoria, TAMPS, Mexico

3. Instituto de Instrumentación para Imagen Molecular (I3M), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Abstract

A covering array (CA) is a combinatorial structure specified as a matrix ofNrows andkcolumns over an alphabet onvsymbols such that for each set oftcolumns everyt-tuple of symbols is covered at least once. Given the values oft,k, andv, the optimal covering array construction problem (CAC) consists in constructing a CA (N;t,k,v) with the minimum possible value ofN. There are several reported methods to attend the CAC problem, among them are direct methods, recursive methods, greedy methods, and metaheuristics methods. In this paper, There are three parallel approaches for simulated annealing: the independent, semi-independent, and cooperative searches are applied to the CAC problem. The empirical evidence supported by statistical analysis indicates that cooperative approach offers the best execution times and the same bounds as the independent and semi-independent approaches. Extensive experimentation was carried out, using 182 well-known benchmark instances of ternary covering arrays, for assessing its performance with respect to the best-known bounds reported previously. The results show that cooperative approach attains 134 new bounds and equals the solutions for other 29 instances.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3