Effects of Dietary Arginine on Growth Performance, Digestion, Absorption Ability, Antioxidant Capability, Gene Expression of Intestinal Protein Synthesis, and Inflammation-Related Genes of Triploid Juvenile Oncorhynchus mykiss Fed a Low-Fishmeal Diet

Author:

Wang Yaling12,Wang Chang’an13ORCID,Liu Siyuan14,Zhang Shuze13,Lu Shaoxia1,Liu Hongbai1ORCID,Han Shicheng1,Jiang Haibo5,Zhang Yin1

Affiliation:

1. Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China

2. College of Fisheries and Life Science Shanghai Ocean University, Shanghai 201306, China

3. Northeast Agricultural University, Harbin 150030, China

4. Dalian Ocean University, Dalian 16000, China

5. College of Animal Science, Guizhou University, Guiyang 550025, China

Abstract

In this study, the effects of arginine on growth, serum antioxidant levels, intestinal digestion physiology, intestinal protein synthesis, and expression of inflammatory-related genes of triploid juvenile rainbow trout (Oncorhynchus mykiss) were investigated. Five diets containing 0.86%, 1.65%, 2.10%, 2.85%, and 3.50% arginine were fed to satiation to triplicate groups of 30 fish per tank for 8 weeks. The results showed that the weight gain rate, specific growth rate, and protein efficiency ratio significantly increased. The optimal dietary arginine requirement was 2.48% (5.97% of dietary protein) based on quadratic regression analysis between specific growth rate and dietary arginine content. There were no significant differences in crude lipid and ash content. Moisture significantly decreased, and crude protein content significantly increased ( P < 0.05 ). Superoxide dismutase, catalase, and lysozyme levels in serum and the liver first significantly increased and then decreased with the level of arginine compared to the control group ( P < 0.05 ), while the malondialdehyde level significantly decreased. Intestinal lipase and amylase levels significantly increased, but there was no significant difference in trypsin level ( P > 0.05 ). The muscular layer thickness and villus width foregut in the 2.85% group were significantly increased. TOR at 2.86% and IGF-1 and S6K1 at 2.11% reached the maximum level, and IL-1β, IL-6, and IL-8 showed a decreasing trend with their lowest levels in the 3.50% and 2.85% groups. The expression of TNF-α first decreased and then increased with the arginine level. Both TGF-β and IL-10 expression first decreased and then increased with the level of arginine and reached the maximum value in the 2.85% group. NF-κB showed an opposite trend and reached the lowest value in the 3.50% group. In conclusion, dietary arginine has a significant effect on growth, serum antioxidant capability, digestion physiology, immunity, digestion, and absorption of nutrients in triploid O. mykiss, and the optimum requirement is 2.48% fed a low-fishmeal diet.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3