On Detecting and Removing Superficial Redundancy in Vector Databases

Author:

DeCastro-García Noemí1ORCID,Muñoz Castañeda Ángel Luis2,Fernández Rodríguez Mario2,Carriegos Miguel V.1

Affiliation:

1. Departamento de Matemáticas, Universidad de León, Campus de Vegazana, s/n, ES-24071 León, Spain

2. Research Institute on Applied Sciences in Cybersecurity, Universidad de León, Campus de Vegazana, s/n, ES-24071 León, Spain

Abstract

A mathematical model is proposed in order to obtain an automatized tool to remove any unnecessary data, to compute the level of the redundancy, and to recover the original and filtered database, at any time of the process, in a vector database. This type of database can be modeled as an oriented directed graph. Thus, the database is characterized by an adjacency matrix. Therefore, a record is no longer a row but a matrix. Then, the problem of cleaning redundancies is addressed from a theoretical point of view. Superficial redundancy is measured and filtered by using the 1-norm of a matrix. Algorithms are presented by Python and MapReduce, and a case study of a real cybersecurity database is performed.

Funder

Spanish National Cybersecurity Institute (INCIBE)

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Brief Survey of Vector Databases;2023 9th International Conference on Big Data and Information Analytics (BigDIA);2023-12-15

2. On directional accuracy of some methods to forecast time series of cybersecurity aggregates;Logic Journal of the IGPL;2022-02-28

3. Measuring the Quality Information of Sources of Cybersecurity by Multi-Criteria Decision Making Techniques;Lecture Notes in Computer Science;2022

4. GDC-a-CGI: efficient algorithms for dynamic graph data cleaning and indexing;International Journal of Computational Science and Engineering;2021

5. On Aggregation and Prediction of Cybersecurity Incident Reports;IEEE Access;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3