Offline Single-Polarization Radar Quantitative Precipitation Estimation Based on a Spatiotemporal Deep Fusion Model

Author:

Zhang Yonghong1ORCID,Chen Shiwei1,Tian Wei2,Ma Guangyi3,Chen Shuai1

Affiliation:

1. School of Automation, Nanjing University of Information Science & Technology, Nanjing, China

2. School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, China

3. School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing, China

Abstract

Quantitative precipitation estimation (QPE) based on Doppler radar plays an important role in severe weather monitoring, industrial and agricultural production, and natural disaster prediction and prevention. However, the temporal and spatial variability of precipitation leads to large errors in radar estimates of mixed precipitation. To improve the accuracy of radar QPE, we propose an offline spatiotemporal deep fusion model that uses the reflectivity data of the Shijiazhuang Doppler radar Z9311 and the precipitation data from 17 national weather stations (NWSs) and 260 automatic weather stations (AWSs). Considering the abrupt spatial changes in precipitation, a three-dimensional radar data structure is proposed, and the spatial features of multielevation and multiscale radar data are extracted and merged using the feature fusion network (FFNet). Finally, the time dependence of the precipitation is captured using the long short-term memory (LSTM) network, and the precipitation estimation is obtained. Based on a comparison of the results of the proposed model (FFNet-LSTM) with those of the ordinary kriging (OK) interpolation, two Z-R relationship, the multilayer perceptron (MLP), the LSTM, and the FFNet, the proposed method is superior to these models, has a promising performance, and is a general-purpose rainfall algorithm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data;Advances in Atmospheric Sciences;2023-02-16

2. Financial Management Early Warning Model Based on Two-layer Kriging Element Model Algorithm;2022 International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS);2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3