Autologous Bioactive Compound Concentrated Growth Factor Ameliorates Fistula Healing of Anal Fistula in a Pig Model and Promotes Proliferation and Migration of Human Skin Fibroblasts via Regulating the MEK/ERK Pathway

Author:

Zhang Xiufeng1,Qiu Jianming1,Wang Houdong1,Lu Zhenfeng1,Shao Shuxian1,He Jun1,Shen Zhong1ORCID

Affiliation:

1. Department of Coloproctology, Hangzhou Third People's Hospital, Zhejiang, China

Abstract

Recent evidence suggested that autologous concentrated growth factor (CGF), a new bioactive compound from autologous blood is used widely as an ingenious biomaterial in tissue regeneration with anti-inflammatory properties. This study investigated whether CGF could be involved in the treatment of fistula healing in the anal fistula. For this purpose, the porcine anal fistula model was conducted using the rubber band ligation method and collected pig autogenic CGF to treat the fistulas. CGF treatment promoted fistula healing, which was reflected in the downregulation of inflammatory factors, upregulation of growth factors, and promoted epithelial-mesenchymal transition with increased collagen synthesis. Besides, 16S rRNA gene sequencing analysis of fistula tissues between the control and CGF groups showed that the microbial populations exhibiting significant differences were VadinCA02, Blastomonas, Deinococcus, Devosia, Sphingomonas, Rubrobacteria, and GW_34. CGF of volunteers were collected to process small interfering RNA- (siRNA-) ERK or siRNA-negative control transfected human skin fibroblasts (HSF). The results showed that CGF also promoted the proliferation and extracellular matrix-related functions in HSF, as well as activated the MEK/ERK pathway in vitro and in vivo. Finally, knockdown ERK reversed the effects of CGF in promoting wound healing in HSF. Collectively, our results suggest that the CGF as the bioactive compound from autologous blood exhibited great potential for repairing fistulas as well as promoting the proliferation and migration of human skin fibroblasts by triggering MEK/ERK signaling. These findings provided a fresh perspective for understanding the role of CGF in the management of fistulas.

Funder

General Program Foundation from the Hangzhou City Health Bureau

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3