Enterprise Accounting Information Identification and Strategic Management under Data Mining Technology

Author:

Shao Jia12ORCID,Lai Kin Keung3ORCID,Zheng Pei4,Zhang Guicai4,Qin Yi4,Lu Wenfeng5

Affiliation:

1. Business School, Xiangtan University, Xiangtan 411105, Hunan, China

2. Jiangxi Zhiboxin Technology Corporation Limited, Ji’an 343900, Jiangxi, China

3. International Business School, Shaanxi Normal University, Xi’an 710062, Shanxi, China

4. Business School, Hunan University, Changsha 410082, Hunan, China

5. Gongqing College, Nanchang University, Nanchang 330031, Jiangxi, China

Abstract

Present-day enterprise accounting solutions have been developed to a certain extent to provide authenticity of accounting information and to provide modules for billing, pay role, general ledger, and more, but they come with certain problems such as distortion of accounting information, incomplete selection of indicator variables, and the limited and single use of identification methods. Based on this, this study starts with two points. The first is to give the concepts of decision trees and support vector machine (SVM) in data mining. Then, the accounting distortion information identification model is constructed based on this, and the model effect is verified by setting experiments. The second is to establish a regression model on the relationship between enterprise strategy and accounting information quality to further explore the factors that affect the quality of enterprise accounting information. The following are the research results: (1) The accuracy rates of classification and identification of training set data, overall data, and test set data using the SVM-based identification model are 99.19%, 96.21%, and 94.8%, respectively. (2) The average identification rate of the sample data is 88.5% using the identification model based on the decision tree. (3) The regression coefficients of enterprise strategy and accounting information quality are −0.053 and −0.054, respectively without considering the industry and year variables and with considering the industry and year variables, both of which are negative at the 0.1 significance level. The purpose of this study is to use data mining to achieve high-quality identification of enterprise accounting information and provide some references for enterprises to choose or formulate relevant development strategies.

Funder

Chinese National Funding of Social Sciences

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3