Brain Model Based on the Canonical Ensemble with Functional MRI: A Thermodynamic Exploration of the Neural System

Author:

Zhou Chenxi12ORCID,Yang Bin12ORCID,Fan Wenliang3ORCID,Li Wei12ORCID

Affiliation:

1. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

2. Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Wuhan, Hubei 430074, China

3. Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Abstract

Objective. System modeling is an important method to study the working mechanisms of the brain. This study attempted to build a model of the brain from the perspective of thermodynamics at the system level, which brought a new perspective to brain modeling. Approach. Regarding brain regions as systems, voxels as particles, and intensity of signals as energy of particles, the thermodynamic model of the brain was built based on the canonical ensemble theory. Two pairs of activated regions and two pairs of inactivated brain regions were selected for comparison in this study, and the thermodynamic properties based on the proposed model were analyzed. In addition, the thermodynamic properties were extracted as input features for the detection of Alzheimer’s disease. Main Results. The experimental results verified the assumption that the brain follows thermodynamic laws. This demonstrated the feasibility and rationality of the proposed brain thermodynamic modeling method, indicating that thermodynamic parameters drawn from our model can be applied to describe the state of the neural system. Meanwhile, the brain thermodynamic model achieved good accuracy in the detection of Alzheimer’s disease, suggesting the potential application of thermodynamic models in auxiliary diagnosis. Significance. (1) In the previous studies, only some thermodynamic parameters in physics were analogized and applied to brain image analysis, while, in this study, a complete system model of the brain was proposed through the principles of thermodynamics. And, based on the neural system models proposed, thermodynamic parameters were obtained to describe the observation and evolution of the neural system. (2) Based on the proposed thermodynamic models, we found and confirmed that the neural system also follows the laws of thermodynamics: the activation of system always leads to increased internal energy, increased free energy, and decreased entropy as what is discovered in many other systems besides classic thermodynamic system. (3) The detection of neural disease was demonstrated to benefit from the thermodynamic model, which confirmed that the thermodynamic model proposed can indeed describe the evolution of the neural system diseases. And it further implied the immense potential of thermodynamics in auxiliary diagnosis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3