A Real-Time Image Semantic Segmentation Method Based on Multilabel Classification

Author:

Jin Ran12ORCID,Han Xiaozhen1,Yu Tongrui1

Affiliation:

1. College of Big Data and Software Engineering, Zhejiang Wanli University, Ningbo 315100, China

2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China

Abstract

Image semantic segmentation as a kind of technology has been playing a crucial part in intelligent driving, medical image analysis, video surveillance, and AR. However, since the scene needs to infer more semantics from video and audio clips and the request for real-time performance becomes stricter, whetherthe single-label classification method that was usually used before or the regular manual labeling cannot meet this end. Given the excellent performance of deep learning algorithms in extensive applications, the image semantic segmentation algorithm based on deep learning framework has been brought under the spotlight of development. This paper attempts to improve the ESPNet (Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation) based on the multilabel classification method by the following steps. First, the standard convolution is replaced by applying Receptive Field in Deep Convolutional Neural Network in the convolution layer, to the extent that every pixel in the covered area would facilitate the ultimate feature response. Second, the ASPP (Atrous Spatial Pyramid Pooling) module is improved based on the atrous convolution, and the DB-ASPP (Delate Batch Normalization-ASPP) is proposed as a way to reducing gridding artifacts due to the multilayer atrous convolution, acquiring multiscale information, and integrating the feature information in relation to the image set. Finally, the proposed model and regular models are subject to extensive tests and comparisons on a plurality of multiple data sets. Results show that the proposed model demonstrates a good accuracy of segmentation, the smallest network parameter at 0.3 M and the fastest speed of segmentation at 25 FPS.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference19 articles.

1. Image segmentation using deep learning: a survey;S. Minaee;Computer Vision and Pattern Recognition,2020

2. Visualizing and Understanding Convolutional Networks

3. A 3D CNN-LSTM-Based Image-to-Image Foreground Segmentation

4. An end-to-end edge aggregation network for moving object segmentation;P. W. Patil

5. IEEE Transactions on Vehicular Technology publication information

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3