Screening of Hub Genes in Hepatocellular Carcinoma Based on Network Analysis and Machine Learning

Author:

Zhang Yu1,Xie Yongfang1ORCID,Huang Xiaorong1ORCID,Zhang Langlang1ORCID,Shu Kunxian1ORCID

Affiliation:

1. School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China

Abstract

Hepatocellular carcinoma (LIHC) is the fifth common cancer worldwide, and it requires effective diagnosis and treatment to prevent aggressive metastasis. The purpose of this study was to construct a machine learning-based diagnostic model for the diagnosis of liver cancer. Using weighted correlation network analysis (WGCNA), univariate analysis, and Lasso-Cox regression analysis, protein-protein interactions network analysis is used to construct gene networks from transcriptome data of hepatocellular carcinoma patients and find hub genes for machine learning. The five models, including gradient boosting, random forest, support vector machine, logistic regression, and integrated learning, were to identify a multigene prediction model of patients. Immunological assessment, TP53 gene mutation and promoter methylation level analysis, and KEGG pathway analysis were performed on these groups. Potential drug molecular targets for the corresponding hepatocellular carcinomas were obtained by molecular docking for analysis, resulting in the screening of 2 modules that may be relevant to the survival of hepatocellular carcinoma patients, and the construction of 5 diagnostic models and multiple interaction networks. The modes of action of drug-molecule interactions that may be effective against hepatocellular carcinoma core genes CCNA2, CCNB1, and CDK1 were investigated. This study is expected to provide research ideas for early diagnosis of hepatocellular carcinoma.

Funder

Natural Science Foundation of Chongqing

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3