Affiliation:
1. College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
2. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
Abstract
Based on near-infrared spectra of three physiological races ofPuccinia striiformisf. sp.tritici(i.e., CYR31, CYR32, and CYR33) irradiated under four UV-B intensities (i.e., 0, 150, 200, and 250 μw/cm2), the effects of UV-B radiation on near-infrared spectroscopy of the pathogen were investigated in spectral region 4000–10000 cm−1, and support vector machine models were built to identify UV-B radiation intensities and physiological races, respectively. The results showed that the spectral curves under UV-B radiation treatments exhibited great differences compared with the corresponding control treatment (0 μw/cm2) in the spectral regions 5300–5600 cm−1and 7000–7400 cm−1and that the absorbance values of all the three physiological races increased with the enhancement of UV-B radiation intensity. Based on near-infrared spectroscopy, different UV-B radiation intensities could be identified and different physiological races could be distinguished from each other with high accuracies. The results demonstrated the utility and stability of the proposed method to identify the physiological races.
Funder
National Natural Science Foundation of China
Subject
Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献