Modeling of Task Planning for Multirobot System Using Reputation Mechanism

Author:

Shi Zhiguo12,Tu Jun1,Li Yuankai23,Wei Junming4

Affiliation:

1. School of Computer and Communication Engineering, University of Science and Technology, Beijing 100083, China

2. Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3

3. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

4. ANU College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia

Abstract

Modeling of task planning for multirobot system is developed from two parts: task decomposition and task allocation. In the part of task decomposition, the conditions and processes of decomposition are elaborated. In the part of task allocation, the collaboration strategy, the framework of reputation mechanism, and three types of reputations are defined in detail, which include robot individual reputation, robot group reputation, and robot direct reputation. A time calibration function and a group calibration function are designed to improve the effectiveness of the proposed method and proved that they have the characteristics of time attenuation, historical experience related, and newly joined robot reward. Tasks attempt to be assigned to the robot with higher overall reputation, which can help to increase the success rate of the mandate implementation, thereby reducing the time of task recovery and redistribution. Player/Stage is used as the simulation platform, and three biped-robots are established as the experimental apparatus. The experimental results of task planning are compared with the other allocation methods. Simulation and experiment results illustrate the effectiveness of the proposed method for multi-robot collaboration system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3