Analysis of Urban Heat Island Effect in Wuhan Urban Area Based on Prediction of Urban Underlying Surface Coverage Type Change

Author:

Zuo Wanyi1,Ren Zhigang12,Shan Xiaofang12,Zhou Zeng3,Deng Qinli12ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

2. Hainan Institute of Wuhan University of Technology, No. 5 Chuangxin Road, Sanya 572024, China

3. School of Urban Design, Wuhan University, 8 Donghu Nan Road, Wuhan, Hubei 430072, China

Abstract

The rapid development of urbanization makes the phenomenon of urban heat islands even more serious. Predicting the impact of land cover change on urban heat island has become one of the research hotspots. Taking Wuhan, China, as an example, this study simulated the land type change in 2020 through the Cellular Automata-Markov-Chain (CA-Markov) model. The urban heat island in 2020 was simulated and analyzed in conjunction with the Weather Research & Forecasting Model (WRF), and the simulation results of wind velocity and temperature were confirmed using weather station observation data. Based on this, the land cover and urban heat island of Wuhan in 2030 were predicted. The temperature was found to be well-fit by CA-Markov simulated land use data, with an average inaccuracy of about 2.5°C for weather stations. Wind speed had a poor fitting effect; the average error was roughly 2 m/s. The built-up area was the center of the high temperature area both before and after the prediction, the water was the low temperature area, and the peak heat island happened at night. According to the forecast results, there will be more built-up land in 2030, and there will be a greater intensity of heat islands than in 2020.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3