Identification of a 5-Nutrient Stress-Sensitive Gene Signature to Predict Survival for Colorectal Cancer

Author:

Xiong Jingjie1,Xiong Subing2,Feng Xi1,Zhang Huaming3,Su Qisheng4ORCID

Affiliation:

1. Department of Cardiovascular Medicine, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430071, China

2. Department of Gastroenterology, Zhijiang People’s Hospital, Yichang 443000, China

3. Clinical Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071 Hubei, China

4. Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi, China

Abstract

Background. The high heterogeneity and the complexity of the tumor microenvironment of colorectal cancer (CRC) have enhanced the difficulty of prognosis prediction based on conventional clinical indicators. Recent studies revealed that tumor cells could overcome various nutritional deficiencies by gene regulation and metabolic remodeling. However, whether differentially expressed genes (DEGs) in CRC cells under kinds of nutrient deficiency could be used to predict prognosis remained unveiled. Methods. Three datasets (GSE70976, GSE13548, and GSE116087), in which colon cancer cells were, respectively, cultured in serum-free, glucose-free, or glutamine-free medium, were included to delineate the profiles of gene expression by nutrient stress. DEGs were figured out in three datasets, and gene functional analysis was performed. Survival analyses and Cox proportional hazards model were then used to identify nutrient stress sensitive genes in CRC datasets (GSE39582 and TCGA COAD). Then, a 5-gene signature was constructed and the risk scores were also calculated. Survival analyses, cox analyses, and nomogram were applied to predict the prognosis of patients with colorectal cancer. The effectiveness of the risk model was also tested. Results. A total of 48 genes were found to be dysregulated in serum, glucose, or glutamine-deprived CRC cells, which were mainly enriched in cell cycle and endoplasmic reticulum stress pathways. After further analyses, 5 genes, MCM5, MCM6, CDCA2, GINS2, and SPC25, were identified to be differentially expressed in CRC and be related to prognosis of in CRC datasets. We used the above nutrient stress-sensitive genes to construct a risk scoring model. CRC samples in the datasets were divided into low-risk and high-risk groups. Data showed that higher risk scores were associated with better outcomes and risk scores decreased significantly with tumor procession. Moreover, the risk score could be used to predict the probability of survival based on nomogram. Conclusions. The 5-nutrient stress-sensitive gene signature could act as an independent biomarker for survival prediction of CRC patients.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3