Evaluation of SAR Distribution in Six-Layer Human Head Model

Author:

Lak Asma1ORCID,Oraizi Homayoon2

Affiliation:

1. Young Researchers Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran

2. Iran University of Science and Technology, Tehran, Iran

Abstract

The interaction between human head model and electromagnetic field sources is studied. The head models are composed of one and six layers. The six layers are skin, fat, bone, dura (the outer membrane of brain and spinal cord), CSF (colony stimulating factor), and brain. An antenna as a source of exposure is simulated too. The E-field strength distribution in both one- and six-layer human models is shown to estimate the intensity of E-field penetration in human head. Like standard models, the antenna is situated near the head model at a distance of 5 mm. The local and average SARs (specific absorption rates) are simulated at 900 MHz in both human head models. The results are then compared between the two models. The HFSS software is used for all the simulations. The paper wants to show that the initial model (one layer) is not a good model, because the real human head tissue is not equivalently modeled. It seems that the values of one-layer model are not reliable, so the paper considers the better and more similar human head model and compares these two models.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A simulation study of dual band THz soft antenna for biomedical applications;Scientific African;2024-09

2. Distribution of Mobile Phone Electric Field Intensity Inside a Child's Eyes;2024 23rd International Symposium on Electrical Apparatus and Technologies (SIELA);2024-06-12

3. A Spiral Flower Shape Wearable Antenna for Smart Internet of Things Applications;Jordan Journal of Electrical Engineering;2024

4. Patch Antenna based Detection of Head Tumors;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

5. Influence of Mobile Phone Position on Magnetic Field Distribution;2023 16th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3