A User-Defined Location-Sharing Scheme with Efficiency and Privacy in Mobile Social Networks

Author:

Peng Tao1,Liu Jierong1,Wang Guojun1ORCID,Liu Qin2,Chen Jianer1,Zhu Jiawei1

Affiliation:

1. School of Computer Science, Guangzhou University, Guangzhou, Guangdong 510006, China

2. School of Information Science and Engineering, Hunan University, Changsha, Hunan 410082, China

Abstract

The popularity of the modern smart devices and mobile social networks (MSNs) brings mobile users better experiences and services by taking advantage of location-aware capabilities. Location sharing, as an important function of MSNs, has attracted attention with growing popularity. While the users get great benefits and conveniences from MSNs, they also have high concerns about the privacy of location. However, in the existing solution, the privacy of users can hardly be guaranteed without the assumption of full trust in the service provider (SP), and few previous research studies have discussed the individual requirement of mobile users in MSNs. In this paper, we propose a user-defined location-sharing scheme (ULSS) to achieve enhanced privacy preservation under different contexts. We present a coarse-grained proximity detection method and a lightweight order-preserving encryption- (OPE-) based method to provide the users with flexible privacy preservation at different privacy levels. The proposed scheme preserves user’s location privacy with respect to SP, friends, and other adversaries, getting rid of the introduction of fully trusted party (TTP). Extensive experiments were conducted to verify the effectiveness and efficiency of our proposed scheme.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Privacy-preserving multiobjective task assignment scheme with differential obfuscation in mobile crowdsensing;Journal of Network and Computer Applications;2024-04

2. Personalized Privacy-Preserving Information Fusion in Mobile Crowdsensing;2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2022-12

3. GLBR: A novel global load balancing routing scheme based on intelligent computing in partially disconnected wireless sensor networks;International Journal of Distributed Sensor Networks;2022-04

4. A Privacy-Preserving Mobile Crowdsensing Scheme Based on Blockchain and Trusted Execution Environment;IEICE Transactions on Information and Systems;2022-02-01

5. Enhanced Data Privacy Preservation Model for Mobile Crowdsensing System Using Blockchain Technology;Ambient Communications and Computer Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3