Removal of Mercury from Coal-Fired Flue Gas and Its Sulfur Tolerance Characteristics by Mn, Ce Modified γ-Al2O3 Catalyst

Author:

He Zhong1,Xie Yating1,Wang Yuan1,Xu Jingjie1,Hu Jiangjun1ORCID

Affiliation:

1. School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei 430079, China

Abstract

Mercury pollution in the atmospheric environment is a matter of international concern. Mercury in coal-fired flue gas is the first human mercury emission source and has become the focus of national mercury pollution control. The catalytic performance of zerovalent mercury (Hg0) in coal-fired flue gas was studied by using manganese-cerium-aluminum oxide as catalyst. The effects of metal loading ratio, reaction temperature, calcination temperature, and O2 and SO2 concentration on the efficiency of Hg0 catalytic removal were investigated, and the Mn-Ce/γ-Al2O3 catalysts before and after the reaction were characterized by BET, SEM, XRD, and XPS to analyze the physicochemical properties of the samples. The results show that the mercury removal efficiency of the composite catalyst with Mn, Ce, and Al as the active component is higher than that of the single metal catalyst. The catalytic activity of Mn0.1Ce0.02Al is the best, the optimum reaction temperature is 150°C, the optimum calcination temperature is 400°C, and the O2 concentration in the conventional flue gas condition satisfies the effective oxidation of Hg0; SO2 in the flue gas can seriously inhibit the oxidation of Hg0.

Funder

Wuhan University

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3