Affiliation:
1. School of Computer, National University of Defense Technology, Changsha, Hunan 410073, China
2. National Key Laboratory of Parallel and Distributed Processing (PDL), National University of Defense Technology, Changsha, Hunan 410073, China
Abstract
The proliferation of mobile devices over recent years has led to a dramatic increase in mobile traffic. Demand for enabling accurate mobile app identification is coming as it is an essential step to improve a multitude of network services: accounting, security monitoring, traffic forecasting, and quality-of-service. However, traditional traffic classification techniques do not work well for mobile traffic. Besides, multiple machine learning solutions developed in this field are severely restricted by their handcrafted features as well as unreliable datasets. In this paper, we propose a framework for real network traffic collection and labeling in a scalable way. A dedicated Android traffic capture tool is developed to build datasets with perfect ground truth. Using our established dataset, we make an empirical exploration on deep learning methods for the task of mobile app identification, which can automate the feature engineering process in an end-to-end fashion. We introduce three of the most representative deep learning models and design and evaluate our dedicated classifiers, namely, a SDAE, a 1D CNN, and a bidirectional LSTM network, respectively. In comparison with two other baseline solutions, our CNN and RNN models with raw traffic inputs are capable of achieving state-of-the-art results regardless of TLS encryption. Specifically, the 1D CNN classifier obtains the best performance with an accuracy of 91.8% and macroaverage F-measure of 90.1%. To further understand the trained model, sample-specific interpretations are performed, showing how it can automatically learn important and advanced features from the uppermost bytes of an app’s raw flows.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献