Affiliation:
1. Department Solare Energetik, Hahn-Meitner-Institut, 14109 Berlin, Germany
Abstract
Dyes of characteristically different composition have been tested with respect to long-term stability in operating standardized dye sensitized cells during a time period of up to 3600 hours. Selective solar illumination, the use of graded filters, and imaging of photocurrents revealed that degradation is linked to the density of photocurrent passed. Photoelectrochemical degradation was observed with all sensitizers investigated. Sensitization was less efficient and sensitizers were less photostable with nanostructured ZnO compared to nanostructured . The best performance was confirmed for cis- on . However, it was 7–10 times less stable under other identical conditions on ZnO. Stability is favored by carboxylate anchoring and metal-centred electron transfer. In presence of , it is enhanced by formation of a stabilizing charge-transfer complex between oxidized Ru dye and back-bonding interfacial states. This is considered to be the main reason for the ongoing use of expensive Ru complexes in combination with . The local surface chemistry of the nanocrystalline turned out to be a crucial factor for sensitizer stability and requires further investigation.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献