Study on Osmotic Consolidation and Hydraulic Conductivity Behavior of an Expansive Soil Inundated with Sodium Chloride Solution

Author:

Sathyapriya S.1ORCID,Sharvesh R.1ORCID,Karthik V.2,Periyasamy Selvakumar3ORCID,Sundramurthy Venkatesa Prabhu45ORCID

Affiliation:

1. Department of Geotechnical Engineering, Government College of Technology, Coimbatore-641013, India

2. Department of Industrial Biotechnology, Government College of Technology, Coimbatore-641013, India

3. Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama-1888, Ethiopia

4. Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

5. Center of Excellence for Bioprocess and Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Abstract

Canals are a very imperative source of irrigation for the agricultural sector in India. Seepage causes major water loss in canals, and hence, the installation of liners becomes necessary. Compacted clay soils are commonly used as liners in the canals. This structure will most probably be subjected to salinization and desalinization cycles throughout its life. Because of the interaction between the pore liquid and clay particles, physico-chemical influences considerably impact the behavior of clay barriers. In this paper, the effect of interacting fluid on volume change, consolidation parameters, and hydraulic conductivity of compacted clay soil is investigated with the help of a one-dimensional consolidation test. The compacted clay specimens were immersed alternatively with distilled water (DW) and sodium chloride (NaCl) solutions (SW) at constant loading of 10 kPa, which replicates the load conditions in the field canal due to 1 m head of water and incremental loading as per IS 2720 part 15 standards. The experimental results proved that there is a percentage volume change increase of about two times for each stage inundated with 4M NaCl solution than its preceding stages inundated with distilled water at constant loading of 10 kPa. The consolidation rate was accelerated with 4M NaCl solution than the normal consolidation at incremental loading. The permeability coefficient in the salt water-induced sample increased by 217% more than the distilled water-induced sample at incremental loading. Therefore, the soil specimen subjected to alternate salinization and desalinization cycles significantly affects the volumetric and consolidation behavior, leading to decreased life of clay barrier structures.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3