Affiliation:
1. School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China
2. School of Sciences, Xi’an Technological University, Xi’an 710021, China
Abstract
Most of the multiprocessor real-time scheduling algorithms follow the partitioned approach, the global approach, or the semipartitioned approach which is a hybrid of the first two by allowing a small subset of tasks to migrate. EDF-fm (Earliest Deadline First-based Fixed and Migrating) and EDF-os (Earliest Deadline First-based Optimal Semipartitioned) are semipartitioned approaches and were proposed for soft real-time sporadic task systems. Despite their desirable property that migrations are boundary-limited such as they can only occur at job boundaries, EDF-fm and EDF-os are not always optimal and have higher tardiness and cost of overheads due to task migration. To address these issues, in this paper, we classify the systems into different types according to the utilization of their tasks and propose a new semipartitioned scheduling algorithm, earliest deadline first-adaptive, dubbed as EDF-adaptive. Our experiments show that EDF-adaptive can achieve better performance than EDF-fm and EDF-os, in terms of system utilization and tardiness overhead. It is also proved that EDF-adaptive is able to lessen the task migration overhead, by reducing the number of migrating jobs and the number of processors to which a task is migrated.
Funder
Industrial Science and Technology Research Project of Shaanxi Province of China
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering