Morphophysiological Traits of Gray Mangrove (Avicennia marina (Forsk.) Vierh.) at Different Levels of Soil Salinity

Author:

Abou Seedo Kholoud1,Abido Mohammad S.1ORCID,Salih Ahmed1,Abahussain Asma1

Affiliation:

1. Department of Natural Resources and Environmental Sciences, Arabian Gulf University, Manama, Bahrain

Abstract

The traits of gray mangrove (Avicennia marina (Forsk.) Vierh.) at different levels of soil salinity were assessed at three sites along the Tubli Bay coastline of Bahrain. Morphophysiological traits include rates of photosynthesis and transpiration, leaf morphology, and leaf pigment content. Results showed that the rates of photosynthesis and transpiration, the intercellular CO2 concentration, and stomatal conductance were significantly lower (p ≤ 0.05) in the trees of a low salinity site compared to those of high salinity sites. Pairwise correlation between soil electrical conductivity levels and photosynthesis and transpiration rates was very low, implying an adverse effect of low salinity on both processes. However, the dimensions of leaf area and the sclerophylly index were significantly higher (p ≤ 0.05) in the trees grown in low salinity site compared to those in more saline conditions. On the other hand, pigments were significantly lower in leaves of trees grown in low salinity site compared to the other two sites. The pairwise correlation between electrical conductivity values and chlorophyll a, b, and carotenoid was 0.51, 0.52, and 0.57 consecutively at (p <0.0001), implying moderate effect of salinity on leaf pigments. This study illustrates the adverse and positive effects of soil salinity on some traits of gray mangrove in Bahrain, which might be considered in ecosystem rehabilitation along other coastlines of the country.

Publisher

Hindawi Limited

Subject

Nature and Landscape Conservation,Plant Science,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3