Losartan Reverses Hippocampal Increase of Kynurenic Acid in Type 1 Diabetic Rats: A Novel Procognitive Aspect of Sartan Action

Author:

Chmiel-Perzyńska Iwona1,Perzyński Adam2,Olajossy Bartosz3,Gil-Kulik Paulina4ORCID,Kocki Janusz4,Urbańska Ewa M.15ORCID

Affiliation:

1. Department of Experimental and Clinical Pharmacology, Medical University in Lublin, Poland

2. II Department of Psychiatry and Psychiatry Rehabilitation, Medical University in Lublin, Poland

3. Internal Medicine and Cardiology Clinic, 1st Military Clinical Hospital in Lublin, Poland

4. Department of Clinical Genetics, Medical University in Lublin, Poland

5. Laboratory of Cellular and Molecular Pharmacology, Department of Experimental and Clinical Pharmacology, Medical University in Lublin, Poland

Abstract

Patients with diabetes mellitus (DM) type 1 and 2 are at a higher risk of cognitive decline and dementia; however, the underlying pathology is poorly understood. Kynurenic acid (KYNA), endogenous kynurenine metabolite, displays pleiotropic effects, including a blockade of glutamatergic and cholinergic receptors. Apart from well-known glial origin, kynurenic acid is robustly synthesized in the endothelium and its serum levels correlate with homocysteine, a risk factor for cognitive decline. Studies in an experimental DM model suggest that a selective, hippocampal increase of the kynurenic acid level may be an important factor contributing to diabetes-related cognitive impairment. The aim of this study was to assess the effects of chronic, four-week administration of losartan, angiotensin receptor blocker (ARB), on the brain KYNA in diabetic rats. Chromatographic and rt-PCR techniques were used to measure the level of KYNA and the expression of genes encoding kynurenine aminotransferases, KYNA biosynthetic enzymes, in the hippocampi of rats with streptozotocin-induced DM, treated with losartan. The effect of losartan on KYNA synthesis de novo was also evaluated in vitro, in brain cortical slices. The hippocampal increase of KYNA content occurred in diabetic rats treated and nontreated with insulin. Losartan did not affect KYNA levels when administered per se to naïve or diabetic animals but normalized KYNA content in diabetic rats receiving concomitantly insulin. The expression of CCBL1 (kat 1), AADAT (kat 2), and KAT3 (kat 3) genes did not differ between analyzed groups. Low concentrations of losartan did not affect KYNA production in vitro. The neuroprotective effect of ARBs in diabetic individuals may be, at least partially, linked to modulation of KYNA metabolism. The ability of ARB to modulate synthesis of KYNA in diabetic brain does not seem to result from changed expression of genes encoding KATs. We propose possible involvement of angiotensin AT4 receptors in the observed action of losartan.

Funder

Uniwersytet Medyczny w Lublinie

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3