Medical Imaging Diagnosis of Anterior Cruciate Ligament Injury Based on Intelligent Finite-Element Algorithm

Author:

Wang Minzhuo1ORCID

Affiliation:

1. School of Physical Education, Shanxi University, Shanxi 030006, China

Abstract

A medical imaging method based on an intelligent finite-element algorithm was proposed to diagnose anterior cruciate ligament injury modeling better. CT three-dimensional finite-element modeling was used to predict the fixation points of the anterior cruciate ligament (ACL) femoral tunnel. In this study, 19 subjects were selected, including 11 males and 8 females. There were seven cases of the left knee and 12 cases of the right knee; all patients had sports injuries. The anatomical structure of a patient’s knee was transformed into a three-dimensional model using finite-element analysis software for segmentation. The models of the tibial plateau and lateral femoral condyle were retained. The results showed that the Lysholm score difference (D) between 6 months after surgery and 1 day before surgery was used as the dependent variable in the three-dimensional finite-element model of knee joint established by the software. Pearson’s correlation analysis was performed, and the difference P < 0.05 was statistically significant. The original image of the Dicom format obtained through CT scan is preprocessed in Mimics without any format conversion, which avoids the loss of information, saves more time, and reduces the workload. The definition of “threshold” is used to complete the extraction of bone contour and realize automation. The speed and accuracy of modeling are improved.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Reference18 articles.

1. Research on intelligent diagnosis algorithm of diseases based on machine learning;J. Zhou

2. Research on key technologies of fault diagnosis and early warning for high-end equipment based on intelligent manufacturing and Internet of Things

3. Research on the Effect of Repairing Anterior Teeth with All-Ceramic Veneer Based on CT Images

4. Flowmesher: An Automatic Unstructured Mesh Generation Algorithm with Applications from Finite Element Analysis to Medical Simulations;Z. Wang,2021

5. Comparison of finite element models of osteonecrosis of the femoral head based on ct grey-assigned method;Z. Xue;Chinese Journal of Tissue Engineering Research,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3