A New Technique for Integrating MEMS-Based Low-Cost IMU and GPS in Vehicular Navigation

Author:

Navidi Neda1,Landry René Jr.1,Cheng Jianhua2,Gingras Denis3

Affiliation:

1. LASSENA Laboratory, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC, Canada H3C 1K3

2. Marine Navigation Research Institute, College of Automation, Harbin Engineering University, Harbin 150001, China

3. LIV Laboratory, Electrical and Computer Engineering Department, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1

Abstract

In providing acceptable navigational solutions, Location-Based Services (LBS) in land navigation rely mostly on integration of Global Positioning System (GPS) and Inertial Navigation System (INS) measurements for accuracy and robustness. The GPS/INS integrated system can provide better land-navigation solutions than the ones any standalone system can provide. Low-cost Inertial Measurement Units (IMUs), based on Microelectromechanical Systems (MEMS) technology, revolutionized the land-navigation system by virtue of their low-cost miniaturization and widespread availability. However, their accuracy is strongly affected by their inherent systematic and stochastic errors, which depend mainly on environmental conditions. The environmental noise and nonlinearities prevent obtaining optimal localization estimates in Land Vehicular Navigation (LVN) while using traditional Kalman Filters (KF). The main goal of this paper is to effectively eliminate stochastic errors of MEMS-based IMUs. The proposed solution is divided into two main components: (1) improving noise cancellation, using advanced stochastic error models in MEMS-based IMUs based on combined Autoregressive Processes (ARP) and first-order Gauss-Markov Process (1GMP), and (2) modeling the low-cost GPS/INS integration, using a hybrid Fuzzy Inference System (FIS) and Second-Order Extended Kalman Filter (SOEKF). The results obtained show that the proposed methods perform better than the traditional techniques do in different stochastic and dynamic situations.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3