Positive Invertibility of Matrices and Exponential Stability of Linear Stochastic Systems with Delay

Author:

Kadiev Ramazan12ORCID,Ponosov Arcady12ORCID

Affiliation:

1. Dagestan Research Center of the Russian Academy of Sciences & Department of Mathematics, Dagestan State University, Makhachkala 367005, Russia

2. Department of Sciences and Technology, Norwegian University of Life Sciences, P. O. Box 5003, NO-1432, Ås, Norway

Abstract

The work addresses the exponential moment stability of solutions of large systems of linear differential Itô equations with variable delays by means of a modified regularization method, which can be viewed as an alternative to the technique based on Lyapunov or Lyapunov-like functionals. The regularization method utilizes the parallelism between Lyapunov stability and input-to-state stability, which is well established in the deterministic case, but less known for stochastic differential equations. In its practical implementation, the method is based on seeking an auxiliary equation, which is used to regularize the equation to be studied. In the final step, estimation of the norm of an integral operator or verification of the property of positivity of solutions is performed. In the latter case, one applies the theory of positive invertible matrices. This report contains a systematic presentation of how the regularization method can be applied to stability analysis of linear stochastic delay equations with random coefficients and random initial conditions. Several stability results in terms of positive invertibility of certain matrices constructed for general stochastic systems with delay are obtained. A number of verifiable sufficient conditions for the exponential moment stability of solutions in terms of the coefficients for specific classes of Itô equations are offered as well.

Funder

Norwegian University of Life Sciences

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Reference23 articles.

1. Stability properties of systems of linear stochastic differential equations with random coefficients;A. N. Bishop,2018

2. Problems and Solutions in Mathematical Finance

3. Optimal Control for Stochastic Delay Evolution Equations

4. Almost sure exponential stability of hybrid stochastic functional differential equations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3