Word Sequential Using Deep LSTM and Matrix Factorization to Handle Rating Sparse Data for E-Commerce Recommender System

Author:

Hanafi 1ORCID,Mohd Aboobaider Burhanuddin2ORCID

Affiliation:

1. Faculty of Computer Science, University of Amikom Yogyakarta, Yogyakarta 55283, Indonesia

2. Faculty of Information and Communication Technology, Technical University of Malacca, Malacca 76100, Malaysia

Abstract

Recommender systems are essential engines to deliver product recommendations for e-commerce businesses. Successful adoption of recommender systems could significantly influence the growth of marketing targets. Collaborative filtering is a type of recommender system model that uses customers’ activities in the past, such as ratings. Unfortunately, the number of ratings collected from customers is sparse, amounting to less than 4%. The latent factor model is a kind of collaborative filtering that involves matrix factorization to generate rating predictions. However, using only matrix factorization would result in an inaccurate recommendation. Several models include product review documents to increase the effectiveness of their rating prediction. Most of them use methods such as TF-IDF and LDA to interpret product review documents. However, traditional models such as LDA and TF-IDF face some shortcomings, in that they show a less contextual understanding of the document. This research integrated matrix factorization and novel models to interpret and understand product review documents using LSTM and word embedding. According to the experiment report, this model significantly outperformed the traditional latent factor model by more than 16% on an average and achieved 1% on an average based on RMSE evaluation metrics, compared to the previous best performance. Contextual insight of the product review document is an important aspect to improve performance in a sparse rating matrix. In the future work, generating contextual insight using bidirectional word sequential is required to increase the performance of e-commerce recommender systems with sparse data issues.

Funder

Universitas Amikom Yogyakarta

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference36 articles.

1. Recommender Systems

2. The netflix recommender system: algorithms, business value, and innovation;C. G. Uribe;ACM Transactions on Information Systems,2015

3. The YouTube video recommendation system

4. E-Commerce Recommendation Applications

5. Recommender systems survey

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3