Alpha Lipoic Acid Improves Endothelial Function and Oxidative Stress in Mice Exposed to Chronic Intermittent Hypoxia

Author:

Badran Mohammad1ORCID,Abuyassin Bisher1ORCID,Golbidi Saeid1ORCID,Ayas Najib234,Laher Ismail1ORCID

Affiliation:

1. Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada

2. Divisions of Critical Care and Respiratory Medicine, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada

3. Sleep Disorders Program, UBC Hospital, Vancouver, BC, Canada

4. Division of Critical Care Medicine, Providence Health Care, Vancouver, BC, Canada

Abstract

Objective. Obstructive sleep apnea (OSA) is characterized by recurrent airway collapse that causes chronic intermittent hypoxia (CIH). OSA is associated with systemic inflammation and oxidative stress resulting in endothelial dysfunction and cardiovascular disease (CVD). Alpha lipoic acid (ALA) is a potent antioxidant with anti-inflammatory properties. We hypothesized that dietary ALA can improve endothelial function of mice exposed to CIH. Methods. Mice were exposed to either CIH or intermittent air (IA) and treated with dietary ALA (0.2% w/w) or a regular chow diet for 8 weeks. Endothelial function, endothelial nitric oxide (eNOS) uncoupling, systemic oxidative stress, systemic inflammation, aortic expression of inflammatory cytokines, and antioxidant enzymes were measured after 8 weeks. Results. Mice exposed to CIH exhibited endothelial dysfunction accompanied by systemic oxidative stress and inflammation as well as increased aortic expression of inflammatory cytokines. Furthermore, CIH led to eNOS uncoupling. Treatment with dietary ALA reversed endothelial dysfunction in mice exposed to CIH, lowered systemic oxidative stress and inflammation, prevented the increases of inflammatory cytokine gene expression, increased the expression of antioxidant enzymes, and preserved eNOS in a coupled state. Conclusion. ALA attenuates endothelial dysfunction by preventing oxidative stress and inflammation and restoring nitric oxide bioavailability in mice exposed to CIH. Our data suggests the potential beneficial use of ALA as adjunctive therapy in OSA.

Funder

Canadian Institutes of Health Research

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3