Affiliation:
1. Faculty of Electrical Engineering, University of Montenegro, 81000 Podgorica, Montenegro
2. GIPSA Lab, INP, University Grenoble Alpes, 38400 Saint-Martin-d’Hères, France
Abstract
Sparse signals, assuming a small number of nonzero coefficients in a transformation domain, can be reconstructed from a reduced set of measurements. In practical applications, signals are only approximately sparse. Images are a representative example of such approximately sparse signals in the two-dimensional (2D) discrete cosine transform (DCT) domain. Although a significant amount of image energy is well concentrated in a small number of transform coefficients, other nonzero coefficients appearing in the 2D-DCT domain make the images be only approximately sparse or nonsparse. In the compressive sensing theory, strict sparsity should be assumed. It means that the reconstruction algorithms will not be able to recover small valued coefficients (above the assumed sparsity) of nonsparse signals. In the literature, this kind of reconstruction error is described by appropriate error bound relations. In this paper, an exact relation for the expected reconstruction error is derived and presented in the form of a theorem. In addition to the theoretical proof, the presented theory is validated through numerical simulations.
Subject
General Engineering,General Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献