Berberine Suppresses EMT in Liver and Gastric Carcinoma Cells through Combination with TGFβR Regulating TGF-β/Smad Pathway

Author:

Du Haiyan12,Gu Jiangyong12,Peng Qin12,Wang Xiaolan12,Liu Lei12,Shu Xuanyu12,He Qiuying12,Tan Yuhui12ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong, China

2. The Research Centre for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong, China

Abstract

Berberine (BBR), a natural alkaloid derived from Coptis, has anticancer activity. Some researchers have found that it could restrain epithelial-mesenchymal transition (EMT) of melanoma, neuroblastoma, and other tumor cells. However, it is unclear whether BBR can reverse EMT in hepatocellular carcinoma (HCC) and gastric carcinoma (GC). In our study, BBR inhibited the migration and invasion of HepG2, MGC803, and SGC7901 cells in a dose-dependent manner. Transcription sequencing assays showed that Vimentin, MMP, and Smad3 were downregulated, but Smad2, Smad6, TAB2, ZO-1, and claudin 7 were upregulated when treated with BBR. GO Enrichment analysis of KEGG pathway showed that BBR significantly inhibited TGF-β/Smad at 12 h, then, PI3K/Akt and Wnt/β-catenin signaling pathways at 24 h, which were closely related to the proliferation, migration, and EMT. The results of the transcriptome sequencing analysis were verified by Western Blot. It showed that the expression of epithelial marker E-cadherin and ZO-1 remarkably augmented with BBR treatment, as well as declined mesenchymal markers, including N-cadherin and Vimentin, decreased transcription factor Snail and Slug. The effects of BBR were similar to those of the PI3K inhibitor LY294002 and TGF-β receptor inhibitor SB431542. Furthermore, β-catenin and phosphorylation of AKT, Smad2, and Smad3 were changed dose-dependently by BBR treatment, which upregulated p-Smad2 and downregulated the others. Combined with LY or SB, respectively, BBR could enhance the effects of the two inhibitors. Simultaneously, IGF-1 and TGF-β, which is the activator of PI3K/AKT and TGF-β/Smad, respectively, could reverse the anti-EMT effect of BBR. The Molecular Docking results showed BBR had a high affinity with the TGF-β receptor I (TGFβR1), and the binding energy was -7.5 kcal/mol, which is better than the original ligand of TGFβR1. Although the affinity of BBR with TGF-β receptor II (TGFβR2) was lower than the original ligand of TGFβR2, the more considerable negative binding energy (−8.54 kcal/mol) was obtained. BBR upregulated p-Smad2, which was different from other reports, indicating that the function of Smad2 was relatively complex. Combination BBR with SB could enhance the effect of the inhibitor on EMT, and the results indicated that BBR binding to TGFβR was not competitive with SB to TGFβR since different binding amino acid sites. Our experiments demonstrated BBR increased p-Smad2 and decreased p-Smad3 by binding to TGFβR1 and TGβFR2 inhibiting TGF-β/Smad, then, PI3K/AKT and other signaling pathways to restrain EMT, metastasis, and invasion in tumor cells. The effect of BBR was similar on the three tumor cells.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3