The ceRNA Crosstalk between mRNAs and lncRNAs in Diabetes Myocardial Infarction

Author:

Zhou Yun1ORCID,Zhou Chengjun1,Wei Lilong1,Han Chengwu1,Cao Yongtong1ORCID

Affiliation:

1. Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, China

Abstract

Competitive endogenous RNA regulation suggests an intricate network of all transcriptional RNAs that have the function of repressing miRNA function and regulating mRNA expression. Today, the specific ceRNA regulatory mechanisms of lncRNA–miRNA–mRNA in patients who have diabetes mellitus (DM) and myocardial infarction (MI) are still unknown. Two data sets, GSE34198 and GSE112690, were rooted in the Gene Expression Omnibus database to search for changes of lncRNA, miRNA, and mRNA in MI patients with diabetes. Weighted gene correlation network analysis (WGCNA) was used to identify the modules related to the development of diabetes in patients with MI. Target genes of miRNAs were predicted using miRWalk, TargetScan, mirDB, RNA22, and miRanda. Then, functional and enrichment analyses were performed to build the lncRNA–miRNA–mRNA interaction network. We built ceRNA regulatory networks with three lncRNAs, two miRNAs, and nine mRNAs. Differentially expressed genes enriched in biological process, including neutrophil activation, refer to immune response and positive system of defense feedback. Besides, there is significant enrichment in molecular function of calcium toll−like receptor binding, icosanoid binding, RAGE receptor binding, and arachidonic acid binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis enriched differentially expressed genes (DEGs) in pathways that were well known in MI, indicating inflammation and immune response. Pathways associated with diabetes were also significantly enriched. We confirmed significantly altered lncRNA, miRNA, and mRNA in MI patients with diabetes, which might serve as biomarkers for the progress and development of diabetic cardiovascular diseases. We constructed a ceRNA regulatory network of lncRNA–miRNA–mRNA, which will enable us to understand the novel molecular mechanisms included in the initiation, progression, and interaction between DM and MI, laying the foundation for clinical diagnosis and treatment.

Funder

Key Clinical Specialty Project of Beijing 2020

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3