Affiliation:
1. Department of Applied Mathematics, Payame Noor University, Tehran 193953697, Iran
2. Department of Applied Mathematics, Faculty of Mathematical Science, Ferdowsi University of Mashhad, Mashhad 9177948953, Iran
Abstract
Here, a two-phase algorithm is proposed for solving bounded continuous-time nonlinear optimal control problems (NOCP). In each phase of the algorithm, a modified hybrid genetic algorithm (MHGA) is applied, which performs a local search on offsprings. In first phase, a random initial population of control input values in time nodes is constructed. Next, MHGA starts with this population. After phase 1, to achieve more accurate solutions, the number of time nodes is increased. The values of the associated new control inputs are estimated by Linear interpolation (LI) or Spline interpolation (SI), using the curves obtained from the phase 1. In addition, to maintain the diversity in the population, some additional individuals are added randomly. Next, in the second phase, MHGA restarts with the new population constructed by above procedure and tries to improve the obtained solutions at the end of phase 1. We implement our proposed algorithm on 20 well-known benchmark and real world problems; then the results are compared with some recently proposed algorithms. Moreover, two statistical approaches are considered for the comparison of the LI and SI methods and investigation of sensitivity analysis for the MHGA parameters.
Subject
General Engineering,General Mathematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献