Affiliation:
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
2. Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, China
Abstract
This work is devoted to the study of the high temperature friction and wear behaviors of Cu-based friction pairs in wet clutches under different temperatures, rotation speeds, and loads. Pin-on-disc tests are carried out on the UMT-3. The friction coefficient, wear factor, and high temperature wear mechanism are primarily analyzed. The results show that as the temperature rises from 120°C to 420°C, the friction coefficient increases from 0.28 to 0.35 at first and then decreases to 0.30, when the vibration of friction coefficient is significantly identified. Meanwhile, the wear factor grows gradually from K=7.9×10-8 g/Nm to K=41.8×10-8 g/Nm at first and then grows sharply to K=112.2×10-8 g/Nm. The main wear mechanisms are abrasive wear and ploughing wear when the temperature is below 345°C, and the wear seriously deteriorates when the temperature exceeds 345°C, when the wear mechanism changes to adhesive wear and delamination wear.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献