Affiliation:
1. MOE Key Laboratory for Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract
A route choice prediction model is proposed considering the connected vehicle guidance characteristics. This model is proposed to prevent the delay in the release of guidance information and route planning due to inaccurate timing predictions of the traditional guidance systems. Based on the analysis of the impact of different connected vehicle (CV) guidance strategies on traffic flow, an indexes system for CV guidance characteristics is presented. Selecting five characteristic indexes, a route choice prediction model is designed using the logistic model. A simulation scenario is established by programming different agents for controlling the flow of vehicles and for information acquisition and transmission. The prediction model is validated using the simulation scenario, and the simulation results indicate that the characteristic indexes have a significant influence on the probability of choosing a particular route. The average root mean square error (RMSE) of the prediction model is 3.19%, which indicates that the calibration model shows a good prediction performance. In the implementation of CV guidance, the penetration rate can be considered an optional index in the adjustment of the guidance effect.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献