Monocolonization of Germ-Free Mice withBacteroides fragilisProtects against Dextran Sulfate Sodium-Induced Acute Colitis

Author:

Chiu Chien-Chao1ORCID,Ching Yung-Hao2ORCID,Wang Yu-Chih3ORCID,Liu Ju-Yun45,Li Yen-Peng4,Huang Yen-Te4,Chuang Hsiao-Li4

Affiliation:

1. Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333, Taiwan

2. Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan

3. Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan

4. National Applied Research Laboratories, National Laboratory Animal Center, Taipei 115, Taiwan

5. Department of Microbiology, National Taiwan University College of Medicine, Taipei 115, Taiwan

Abstract

Ulcerative colitis is inflammatory conditions of the colon caused by interplay of genetic and environmental factors. Previous studies indicated that the gut microflora may be involved in the colonic inflammation.Bacteroides fragilis(BF) is a Gram-negative anaerobe belonging to the colonic symbiotic. We aimed to investigate the protective role ofBFin a colitis model induced in germ-free (GF) mice by dextran sulfate sodium (DSS). GF C57BL/6JNarl mice were colonized withBFfor 28 days before acute colitis was induced by DSS.BFcolonization significantly increased animal survival by 40%, with less reduction in colon length, and decreased infiltration of inflammatory cells (macrophages and neutrophils) in colon mucosa following challenge with DSS. In addition,BFcould enhance the mRNA expression of anti-inflammatory-related cytokine such as interleukin 10 (IL-10) with polymorphism cytokineIL-17and diminish that of proinflammatory-related tumor necrosis factorαwith inducible nitric oxide synthase in the ulcerated colon. Myeloperoxidase activity was also decreased inBF-DSS mice. Taking these together, theBFcolonization significantly ameliorated DSS-induced colitis by suppressing the activity of inflammatory-related molecules and inducing the production of anti-inflammatory cytokines.BFmay play an important role in maintaining intestinal immune system homeostasis and regulate inflammatory responses.

Funder

Ministry of Science and Technology of Taiwan

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3