The Dynamics of a Stochastic SIR Epidemic Model with Nonlinear Incidence and Vertical Transmission

Author:

Li Guihua1ORCID,Liu Yuanhang1

Affiliation:

1. Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, China

Abstract

In this study, we build a stochastic SIR epidemic model with vertical infection and nonlinear incidence. The influence of the fluctuation of disease transmission parameters and state variables on the dynamic behaviors of the system is the focus of our study. Through the theoretical analysis, we obtain that there exists a unique global positive solution for any positive initial value. A threshold R 0 s is given. When R 0 s < 1 , the diseases can be extincted with probability one. When R 0 s > 1 , we construct a stochastic Lyapunov function to prove that the system exists an ergodic stationary distribution, which means that the disease will persist. Then, we obtain the conditions that the solution of the stochastic model fluctuates widely near the equilibria of the corresponding deterministic model. Finally, the correctness of the results is verified by numerical simulation. It is further found that the fluctuation of disease transmission parameters and infected individuals with the environment can reduce the threshold of disease outbreak, while the fluctuation of susceptible and recovered individuals has a little effect on the dynamic behavior of the system. Therefore, we can make the disease extinct by adjusting the appropriate random disturbance.

Funder

Natural Science Foundation of Shanxi Province

Publisher

Hindawi Limited

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3