Dynamic Pressure Manifestation Mechanism and Control Techniques for Roadways with Large Mining Heights and Intense Mining: A Case Study

Author:

Xu Dong12ORCID,Gao Mingshi12ORCID,Yu Xin12ORCID

Affiliation:

1. School of Mines, Key Laboratory of Deep Coal Resource Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

2. The State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

Abstract

Responding to severe surrounding rock deformation failures and other problems in roadways in western China with large mining heights and intense mining, the work presented in this paper studied the mechanism of surrounding rock deformation failures in roadways with dynamic pressure through field investigations, theoretical analysis, and numerical simulation. According to the research findings, mining roadway deformation failures are affected by roadway layout orientation, working face mining intensity, and dynamic load disturbances from roof breakage. Coal pillars, as bridges connecting the roof and floor, constitute the energy transfer path near roadways surrounding rock, and an unreasonable coal pillar size and lateral overhanging roof structure may aggravate static load energy accumulation in the roadway surrounding rock. Roadway protection with small or large coal pillars may increase elastic energy loss in the energy transfer path; a reasonable size of small and large coal pillars is 15 m and 35 m, respectively. Using roof cutting for pressure relief may reduce the elastic energy of roadway surrounding rock by 14.35-26.33% during primary mining and 21.57-29.31% during secondary mining, thereby reducing the static load elastic energy in the surrounding rock and improving the stability of roadway surrounding rock.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3