The Design of Miniature Frequency Reconfigurable Antenna Based on Inductive Loading Technology

Author:

Shang Yuqiu1ORCID,Zeng Qingsheng2,Wang Qian1,Wang Xinwei1,Zheng Gengqi1,Shang Feng1

Affiliation:

1. School of Electronics Eng., Xi’an University of Post & Telecommunications, Xi’an, China

2. School of Astronautics, Nanjing University of Aeronautics & Astronautics, Nanjing, China

Abstract

A circularly polarized (CP) and frequency reconfigurable microstrip antenna with loading inductive is presented in this paper. The designed antenna is comprised of a radiating patch, four short-circuited grounded metal posts, and four coupling branches. Each coupling branch has an end that is coupled to the shorted ground post and is also connected to the parasitic branches by means of a group of PIN diodes. By controlling the state of the PIN diodes connected to each parasitic branch, the working resonant frequency of the antenna can be changed. In order to further understand the mechanisms of operation of the antenna, the equivalent circuit model was built, and the circuit model of the antenna was analyzed, and this analysis was used for the development of the frequency reconfigurable microstrip patch antenna. Furthermore, the parameters of specific equivalent circuits can be solved by the three lengths of branch. Meanwhile, the calculated results derived from the given resonant frequency formula for the antenna are in good agreement with the simulation results of the antenna. Simulated results for the input impedance of the antenna are also in good agreement with the calculated values for the equivalent circuit. Finally, the antenna is fabricated and measured, and the measured results show that the antenna can not only achieve frequency reconfiguration at 1.14 GHz, 1.21 GHz, and 1.39 GHz but also accord well with the simulation value, while maintaining a compact size.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3