Affiliation:
1. Provincial Key Laboratory of Oil & Gas Chemical Technology, Chemistry and Chemical Engineering College of Northeast Petroleum University, Daqing 163318, China
Abstract
We report herein the synthesis of a novel star-shaped copolymer containing nano-SiO2 by single-electron transfer living radical polymerization (SET-LRP) in aqueous solution. The effects of polymerization conditions, such as the total amounts and molar ratios of the monomer, initiator, catalyst, ligand, and modified nano-SiO2, have been investigated through a series of experiments. The prepared acrylamide copolymers have been characterized by FTIR spectroscopy and 1H NMR spectrometry. The properties of the copolymers have been assessed by viscometry and rheometry. The results confirmed that the nano-SiO2 functional monomer was successfully combined in the SET-LRP. The optimum polymerization conditions were established through orthogonal experiments as a ratio of [AM] : [DMAEMA] : [I] : [CuBr] : [Me6TREN] of 674.4 : 35.5 : 1 : 1 : 2 at a total concentration of [AM] + [DMAEMA] of 2.5 mol/L. The appropriate concentration of the nano-SiO2 functional monomer (NSFM) was 0.5 wt% with respect to AM + DMAEMA. The rheology of the star-shaped copolymer exhibited a shear-thickening property when the shear rate exceeded a critical value (100 s−1). The AM/DMAEMA/NSFM copolymer displayed a higher viscosity than AM/DMAEMA at the same concentration. It was found that AM/DMAEMA/NSFM exhibited better salt and temperature tolerances.
Funder
National Natural Science Foundation of China
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献