Targeting of C-ROS-1 Activity Using a Controlled Release Carrier to Treat Craniosynostosis in a Preclinical Model of Saethre-Chotzen Syndrome

Author:

Camp Esther12,Garcia Laura Gonzalez3,Pribadi Clara12,Paton Sharon12,Vasilev Krasimir34,Anderson Peter256,Gronthos Stan12ORCID

Affiliation:

1. Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia

2. Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia

3. School of Engineering and Future Industries Institute, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA, Australia

4. College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia

5. Cleft & Craniofacial SA, Woman’s and Children’s Hospital, Adelaide, SA, Australia

6. Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia

Abstract

Saethre-Chotzen syndrome (SCS) is one of the most prevalent craniosynostosis, caused by a loss-of-function mutation in the TWIST-1 gene, with current treatment options relying on major invasive transcranial surgery. TWIST-1 haploinsufficient osteogenic progenitor cells exhibit increased osteogenic differentiation potential due to an upregulation of the transmembrane tyrosine kinase receptor, C-ROS-1, a TWIST-1 target gene known to promote bone formation. The present study assessed the efficacy of suppressing C-ROS-1 activity using a known chemical inhibitor to C-ROS-1, crizotinib, to halt premature coronal suture fusion in a preclinical mouse model of SCS. Crizotinib (1 μM, 2 μM, or 4 μM) was administered locally over the calvaria of Twist1del/+ heterozygous mice prior to coronal suture fusion using either a nonresorbable collagen sponge (quick drug release) or a resorbable sodium carboxymethylcellulose microdisk (slow sustained release). Coronal suture fusion rates and bone parameters were determined by μCT imaging and histomorphometric analysis of calvaria postcoronal suture fusion. Results demonstrated a dose-dependent increase in the efficacy of crizotinib to maintain coronal suture patency, with no adverse effects to brain, kidney, liver, and spleen tissue, or blood cell parameters. Moreover, crizotinib delivered on microdisks resulted in a greater efficacy at a lower concentration to reduce bone formation at the coronal suture sites compared to sponges. However, the bone inhibitory effects were found to be diminished by over time following cessation of treatment. Our findings lay the foundation for the development of a pharmacological nonsurgical, targeted approach to temporarily maintain open coronal sutures in SCS patients. This study could potentially be used to develop similar therapeutic strategies to treat different syndromic craniosynostosis conditions caused by known genetic mutations.

Funder

National Health and Medical Research Council

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3