A Network Optimization Research for Product Returns Using Modified Plant Growth Simulation Algorithm

Author:

Wang Xuping12ORCID,Qiu Jian1,Li Tong2,Ruan Junhu3ORCID

Affiliation:

1. Institute of Systems Engineering, Dalian University of Technology, Dalian 116024, China

2. School of Business, Dalian University of Technology, Panjin 124221, China

3. College of Economics and Management, Northwest A&F University, Yangling 712100, China

Abstract

As product returns are eroding Internet retail profit, managers are continuously striving for a more scientific and efficient network layout to arrange the returned goods. Based on a three-echelon product returns network, this paper proposes a mixed integer nonlinear programming model with the aim of minimizing total cost and creates a high-efficiency method, the Modified Plant Growth Simulation Algorithm (MPGSA), to optimize the problem. The algorithm handles the objective function and the constraints, respectively, requiring no extrinsic parameters and provides a guiding search direction generated from the assessment of the current solving state. Above all, MPGSA keeps a great balance between concentrating growth opportunities on the outstanding growth points and expanding the searching scope. The improvements give the revaluating and reselecting chances to all growth points in each iteration, enhancing the optimization efficiency. A case study illustrates the effectiveness and robustness of MPGSA compared to its original version, Plant Growth Simulation Algorithm, and other approaches, namely, Genetic Algorithm, Artificial Immune System, and Simulated Annealing.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3