Enhancing Image Denoising Performance of Bidimensional Empirical Mode Decomposition by Improving the Edge Effect

Author:

An Feng-Ping1,Lin Da-Chao2,Zhou Xian-Wei1,Sun Zhihui3

Affiliation:

1. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Department of Civil Engineering, North China Institute of Science and Technology, Yanjiao, Beijing 101601, China

3. School of Government, Central University of Finance and Economics, Beijing 100081, China

Abstract

Bidimensional empirical mode decomposition (BEMD) algorithm, with high adaptive ability, provides a suitable tool for the noisy image processing, and, however, the edge effect involved in its operation gives rise to a problem—how to obtain reliable decomposition results to effectively remove noises from the image. Accordingly, we propose an approach to deal with the edge effect caused by BEMD in the decomposition of an image signal and then to enhance its denoising performance. This approach includes two steps, in which the first one is an extrapolation operation through the regression model constructed by the support vector machine (SVM) method with high generalization ability, based on the information of the original signal, and the second is an expansion by the closed-end mirror expansion technique with respect to the extrema nearest to and beyond the edge of the data resulting from the first operation. Applications to remove the Gaussian white noise, salt and pepper noise, and random noise from the noisy images show that the edge effect of the BEMD can be improved effectively by the proposed approach to meet requirement of the reliable decomposition results. They also illustrate a good denoising effect of the BEMD by improving the edge effect on the basis of the proposed approach. Additionally, the denoised image preserves information details sufficiently and also enlarges the peak signal-to-noise ratio.

Funder

Fundamental Research Funds for the Central Universities of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3