Innate Immune Effectors in Mycobacterial Infection

Author:

Saiga Hiroyuki1,Shimada Yosuke12,Takeda Kiyoshi12

Affiliation:

1. Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan

2. WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan

Abstract

Tuberculosis, which is caused by infection withMycobacterium tuberculosis(Mtb), remains one of the major bacterial infections worldwide. Host defense against Mtb is mediated by a combination of innate and adaptive immune responses. In the last 15 years, the mechanisms for activation of innate immunity have been elucidated. Toll-like receptors (TLRs) have been revealed to be critical for the recognition of pathogenic microorganisms including mycobacteria. Subsequent studies further revealed that NOD-like receptors and C-type lectin receptors are responsible for the TLR-independent recognition of mycobacteria. Several molecules, such as active vitamin D3, secretary leukocyte protease inhibitor, and lipocalin 2, all of which are induced by TLR stimulation, have been shown to direct innate immune responses to mycobacteria. In addition, Irgm1-dependent autophagy has recently been demonstrated to eliminate intracellular mycobacteria. Thus, our understanding of the mechanisms for the innate immune response to mycobacteria is developing.

Publisher

Hindawi Limited

Subject

General Medicine,Immunology,Immunology and Allergy

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in immunomodulatory strategies for host-directed therapies in combating tuberculosis;Biomedicine & Pharmacotherapy;2023-06

2. Pathogenicity of Type I Interferons in Mycobacterium tuberculosis;International Journal of Molecular Sciences;2023-02-15

3. Vaccines;Haschek and Rousseaux's Handbook of Toxicologic Pathology, Volume 2 : Safety Assessment Environmental Toxicologic Pathology;2023

4. Gelatin alternative: extractability and functional and bioactivity properties;Natural Gums;2023

5. ROS-directed activation of Toll/NF-κB in the hematopoietic niche triggers benzene-induced emergency hematopoiesis;Free Radical Biology and Medicine;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3