Affiliation:
1. Music Department, Normal College, Changshu Institute of Technology, Changshu 215500, China
Abstract
With the rise of Erhu teaching in recent years, a large number of people have joined the team to learn Erhu playing. However, due to the high cost of teaching and the unique one-to-one teaching mode between teachers and students, Erhu education resources are very scarce. Learning Erhu performance has become a luxury activity. Nowadays, with the rise of artificial intelligence, computer music is developing rapidly. Music has two important aspects: composition and performance. Different kinds of instruments convey different styles, and players inject different rhythms and dynamics into their performance, thus producing rich expressive force. The development of image style conversion, which opens people’s evaluation of music performance, is an important issue in many fields of artificial intelligence (it is also known as intelligence, machine intelligence, referring to the intelligence shown by the machine made by people. Usually, artificial intelligence refers to the technique of presenting human intelligence through ordinary computer programs). For an Erhu song, there are various factors that affect its effectiveness, and there are many indexes to evaluate it, such as sense of rhythm, expressive force, musical sense, style, and so on. Using a computer to simulate the evaluation process is essential to find out the mathematical relationship between the factors that affect the performance of music and the evaluation indexes. Neural network is a kind of mathematical model proposed by simulating the way of thinking of human brain in artificial intelligence. It has the advantages of not having strict requirements on data distribution, nonlinear data processing method, strong robustness, and dynamics and is very suitable for the mathematical model of evaluation system. In addition, the neural network also has a strong theoretical basis, and their application in various industries has developed basically mature. This paper tries to introduce a deep neural network mathematical model into the evaluation system of Erhu performance, and the experimental results prove the reliability and practicality of the method in this paper. It can provide a method basis and theoretical reference for evaluation of Erhu performance effect.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献