Effects of Sodium Octanoate on Innate Immune Response of Mammary Epithelial Cells duringStaphylococcus aureusInternalization

Author:

Alva-Murillo Nayeli1,Ochoa-Zarzosa Alejandra1,López-Meza Joel E.1

Affiliation:

1. Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, 58893 Morelia, MICH, Mexico

Abstract

Bovine mammary epithelial cells (bMECs) are capable of initiating an innate immune response to invading bacteria. Short chain fatty acids can reduceStaphylococcus aureusinternalization into bMEC, but it has not been evaluated if octanoic acid (sodium octanoate, NaO), a medium chain fatty acid (MCFA), has similar effects. In this study we determined the effect of NaO onS. aureusinternalization into bMEC and on the modulation of innate immune elements. NaO (0.25–2 mM) did not affectS. aureusgrowth and bMEC viability, but it differentially modulated bacterial internalization into bMEC, which was induced at 0.25–0.5 mM (~60%) but inhibited at 1-2 mM (~40%). Also, bMEC showed a basal expression of all the innate immune genes evaluated, which were induced byS. aureus. NaO induced BNBD4, LAP, and BNBD10 mRNA expression, but BNBD5 and TNF-αwere inhibited. Additionally, the pretreatment of bMEC with NaO inhibited the mRNA expression induction generated by bacteria which coincides with the increase in internalization; only TAP and BNDB10 showed an increase in their expression; it coincides with the greatest effect on the reduction of bacterial internalization. In conclusion, NaO exerts a dual effect onS. aureusinternalization in bMEC and modulates elements of innate immune response.

Funder

National Council of Science and Technology (CONACyT)

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3