A Risk Score Model Based on Nine Differentially Methylated mRNAs for Predicting Prognosis of Patients with Clear Cell Renal Cell Carcinoma

Author:

Zhou Jingmin1,Liu Guanghua1,Wu Xingcheng1,Zhou Zhien1,Li Jialin1,Ji Zhigang1ORCID

Affiliation:

1. Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing 100730, China

Abstract

Purpose. DNA methylation alterations play important roles in initiation and progression of clear cell renal cell carcinoma (ccRCC). In this study, we attempted to identify differentially methylated mRNA signatures with prognostic value for ccRCC. Methods. The mRNA methylation and expression profiling data of 306 ccRCC tumors were downloaded from The Cancer Genome Atlas (TCGA) to screen differentially methylated lncRNAs and mRNAs (DMLs and DMMs) between bad and good prognosis patients. Uni- and multivariable Cox regression analyses and LASSO Cox-PH regression analysis were used to select prognostic lncRNAs and mRNAs. Corresponding risk scores were calculated and compared for predictive performance in the training set using Kaplan-Meier OS and ROC curve analyses. The optimal risk score was then identified and validated in the validation set. Function enrichment analysis was conducted. Results. This study screened 461 DMMs and 63 DMLs between good prognosis and bad prognosis patients, and furthermore, nine mRNAs and six lncRNAs were identified as potential prognostic molecules. Compared to nine-mRNA status risk score model, six-lncRNA methylation risk score model, and six-lncRNA status risk score model, the nine-mRNA methylation risk score model showed superiority for prognosis stratification of ccRCC patients in the training set. The prognostic ability of the nine-mRNA methylation risk score model was validated in the validation set. The nine prognostic mRNAs were functionally associated with neuroactive ligand receptor interaction and inflammation-related pathways. Conclusion. The nine-mRNA methylation signature (DMRTA2, DRGX, FAM167A, FGGY, FOXI2, KRTAP2-1, TCTEX1D1, TTBK1, and UBE2QL1) may be a useful prognostic biomarker and tool for ccRCC patients. The present results would be helpful to elucidate the possible pathogenesis of ccRCC.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3