Identification of Differentially Expressed Genes and Elucidation of Pathophysiological Relevance of ABCA1 in HaCaT Cells Induced by PM2.5

Author:

Peng Fen12ORCID,Xue Chen-Hong23ORCID,Yang Xiao-Jing2ORCID,Huang Jing-Yi2ORCID,Chen Zhou2ORCID,Zhang Jian-Zhong2ORCID

Affiliation:

1. Beijing Chao-Yang Hospital, Capital Medical School, Dermatology, Beijing 10020, China

2. Peking University People’s Hospital, Dermatology, Beijing 100044, China

3. Henan Provincial People’s Hospital, Dermatology, Beijing 450003, China

Abstract

Objective. In order to investigate the effects of PM2.5 on proliferation, cell cycle, apoptosis, and potential mechanism of human keratinocyte cell line HaCaT. Methods. HaCaT cells were treated with different concentrations of PM2.5 suspension for 24 hours. Cell viability was detected by the CCK-8 method. Cell cycle distribution and apoptosis were detected by flow cytometry. Microarray analyses were used to find out the microarray gene expression profiling; data processing included gene enrichment and pathway analysis. Western blot was conducted to validate the key pathways and regulators in the microarray analysis. Results. The cell activity decreased, and the cell cycle was significantly inhibited with the increase in PM2.5 concentration. Also, by conducting the gene expression microarray assay, we identified 541 upregulated genes and 935 downregulated genes in PM2.5-treated HaCaT cells. Real-time qPCR and western blot confirmed that PM2.5 treatment could induce the expression of ABCA1 while inhibiting that of END1 and CLDN1. Conclusion. Our results showed that PM2.5 could potentially regulate cell apoptosis and cell cycle arrest via ABCA1-, END1-, ID1-, and CLDN1-mediated pathways in human HaCaT cells, which laid a good foundation for follow-up drug intervention and drug development against skin damage caused by PM2.5 exposure.

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3