Estimating Deterioration Rate of Some Carbonate Rocks Used as Building Materials under Repeated Frost Damage Process, China

Author:

Mohamed Aly Abdelhamid Marzouk12ORCID,Li Dong1,Ren Gaofeng13ORCID,Zhang Congrui13ORCID

Affiliation:

1. Wuhan University of Technology, School of Resources and Environmental Engineering, Luoshi Road 122, Wuhan, Hubei 430070, China

2. Al-Azhar University, Faculty of Engineering, Mining and Petroleum Engineering Department, Cairo, Egypt

3. Key Laboratory of Mineral Resources Processing and Environment of Hubei Province, Luoshi Road 122, Wuhan, Hubei 430070, China

Abstract

The degradation of natural rocks due to severe environmental conditions can influence their durability over an extended period of time. This research aims to investigate the long-term durability or disintegration rate of rocks used as construction materials under severe climatic conditions using frost damage action, and the deterioration rate was assessed using mathematical decay function approach. The mathematical model assumes an initial order operation and gives purposeful properties for the deterioration rate of rocks due to frost action. For this reason, six different limestone types used as building materials were quarried from limestone mine in China and subjected to a series of laboratory tests to determine the mineralogical, petrographical, physical, and mechanical characteristics. Then, 50 cycles of frost damage process was performed, and after each 10 cycles, the unconfined compressive strength, point load strength, and Schmidt rebound were determined. The disintegration rate or integrity loss characteristics of each rock type were assessed using the mathematical decay function approach parameters. This approach proved that the disintegration rate varies for the rocks of the same type especially which were extracted from the same areas, the rock durability under frost damage conditions can be estimated with good accuracy, the parameters of this model saved a lot of time and provided important practical features to assess a rapid durability, and hence, there is no need to carry out the frost damage test which is slow and consumes time.

Funder

National Key R&D Plan

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3